পাই এর ইতিহাস

Khandaker md muntasir billah

π এর ইতিহাস আর গণিতের উন্নতি সাধনের সামগ্রিক ইতিহাস প্রায় সমান্তরাল।বিভিন্ন লেখক পাই-এর ইতিহাসকে তিনভাগে ভাগ করেছেন – জ্যামিতি প্রয়োগের প্রাচীনকালের জ্যামিতি যুগ, সপ্তদশ শতকে ইউরোপে ক্যালকুলাস আবিস্কারের পর সনাতনি যুগ এবং কম্পিউটারের আবির্ভাবের পর কম্পিউটার যুগ। জ্যামিতির যুগপরিধি ও ব্যাসের অনুপাত যে, সব বৃত্তের জন্য সমান ও ৩ এর চাইতে বড় - এই সত্য প্রাচীন মিশরীয়, ব্যাবিলনীয়, ভারতীয় ও গ্রিক জ্যামিতজ্ঞদের জানা ছিল। সবচেয়ে পুরনো গণনার কথা জনা যাচ্ছে খ্রিস্টপূর্ব ১৯০০ সালে। এর মধ্যে রয়েছে ব্যাবিলনীয় (25/8) ও মিশরীয়দের (256/81) মান প্রকৃত মানের ১ শতাংশের মধ্যে।ভারতীয় পুস্তক শতপথ ব্রাহ্মণ (Shatapatha Brahmana)-এ π -এর মান ৩৩৯/১০৮≈ ৩..৩১৯ হিসাবে উল্লেখ করা হয়েছে। খ্রিস্টপূর্ব ৬০০ সালে প্রকাশিত বুকস অব কিং-এ π -এর মান ৩ হিসাবে প্রস্তাব করা হয়েছে।আর্কিমিডিস (খ্রিস্টপূর্ব ২৮৭‌-২১২)) প্রথম rigorously পাই-এর মান গণনা করেন। তিনি প্রথমে পাই মানের সীমা বের করলেন। বৃত্তের ভিতরে সুষম বহুভূজের পরিসীমা বের করে তিনি এই কাজটি সমাধা করেন। [আর্কিমিডিস (খ্রিস্টপূর্ব ২৮৭‌-২১২)) প্রথম rigorously পাই-এর মান গণনা করেন। তিনি প্রথমে পাই মানের সীমা বের করলেন। বৃত্তের ভিতরে সুষম বহুভূজের পরিসীমা বের করে তিনি এই কাজটি সমাধা করেন। [৯৬ বাহু বিশিষ্ট বহুভূজ একে তিনি দেখালেন 223/71 < π < 22/7এই দুই-এর গড় নিয়ে পাই-এর একটি মান পাওয়া গেল ৩.১৪১৯. পরবর্তী শতকগুলোতে ভারত ও চীনে বেশ কাজ হয়েছ। মোটামুটি ৪৮০ সালে চীনা গণিতজ্ঞ জু চোঙ্গজি পাই‌ এর আসন্ন মান বের করলেন ৩৫৫/১১৩ এবং প্রমাণ করলেন 3.1415926 < π < 3.1415927 যা কিনা পরবর্তী ৯০০ বছর পর্যন্ত সবচেয়ে সঠিক হিসাবে বিবেচিত হয়েছেসনাতনী যুগদ্বিতীয় সহস্রাব্দ শুরুর আগে পাই এর মান দশমিকের পর ১০ ঘর পর্যন্ত জানা ছিল। পাই গবেষণার পরবর্তী উল্লেখযোগ্য অগ্রগতি ঘটে ক্যালকুলাস, বিশেষ করে অসীম ধারা আবিস্কারের পর থেকে। অসীম ধারা থেকে বোঝা গেল বেশি বেশি পদ যোগ করে পাইর মান অধিকতর সূক্ষতায় বের করা যাবে। ১৪০০ সালের দিকে সংগমাগ্রামার মাধব প্রথম সেরকম ধারা খুঁজে পান।এই ধারাটি এখন গ্রেগরি‌-লিবনিৎজ ধারা নামে পরিচিত কারণ সপ্তদশ শতকে এটি তাদের দ্বারা পুনঃ আবিস্কৃত হয়। দুঃখের বিষয় এর কেন্দ্রীভূততার হার খুবই ধীর। এমনকি আর্কিমিডিসের সমান সূক্ষতার জন্য প্রায় ৪০০০ পদের যোগফল নেওয়া দরকার হয়ে পড়ে। যাহোক সিরিজটিকে নিচের ধারায় রূপান্তরিত করেমাধব π=3.14159265359, বের করেন যা ১১ ঘর পর্যন্ত সঠিক। ১৪২৪ সালে ইরানের জ্যোতির্বিদ জামশিদ আল-কাশি ১৬ ঘর পর্যন্ত π-এর মান বের করলে মাধবের রেকর্ড ভেঙ্গে যায়। জার্মান গণিতজ্ঞ লুডলফ ভন চিউলেন আর্কিমিডিসের পর প্রথম ইউরোপীয় হিসাবে পাই গণনায় শরীক হোন। তিনি জ্যামিতিক পদ্ধতিতে দশমিকের পর ৩২ ঘর পর্যন্ত সঠিকভাবে পাই গণনা করেন। এই গণনা করে তিনি এত বেশি আনন্দিত ও গর্বিত হোন যে, মৃত্যুর পর তার সমাধিতে সেটি উৎকীর্ণ করা হয়। এই সময়ে ইউরোপে ক্যালকুলাস, অসীম ধারার সমাধান ও জ্যামিতিক গুণন পদ্ধতির আবির্ভাব হয়। সেরকম প্রথম হলো ভিয়েতের সূত্র, যা তিনি ১৫৯৩ সালে আবিষ্কার করেন।।[18/01, 12:34 pm] Muntasir Billah: আর একটি বিখ্যাত ফল হলো ১৬৫৫ সালে জন ওয়ালির সূত্রবদ্ধ ওয়ালির গুনফল [18/01, 12:34 pm] Muntasir Billah: জন মাচিন হলেন প্রথম ব্যক্তি যিনি কী না ১০০ ঘর পর্যন্ত পাই-এর মান বের করেন। তিনিএই ধরনের সূত্রকে এখন মাচিন তূল্য সূত্র বলা হয়। মাচিন-তুল্য সূত্র সমূহ কম্পিউটার আগমনের আগ পর্যন্ত পাই গণনায় সবচেয়ে সফল ছিল। সেরকম অনেক সূত্র তখন প্রচলিত ছিল। এমন একটি সূত্রের সাহায্যে ১৮৪৪ সালে জাকারিয়াস ডাসে মুখে মেখে ২০০ ঘর পর্যন্ত গণনা করে সবাইকে তাক লাগিয়ে দেন। ১৯ শতকে সবচেয়ে ভালো সাফল্য উইলিয়াম শাঙ্ক-এর. ১৫ বছরে তিনি দশমিকের পর ৭০৭ ঘর পর্যন্ত গণনা করেন। তবে পরে দেখা যায় সামান্য ভুলের জন্য ৫২৭ ঘর পর্যন্ত তার হিসাব সঠিক ছিল (এই ধরনের ভুল এড়ানোর জন্য এখন কমপক্ষে দুইভাবে গণনা করে দেখা হয় সঠিক আছে কী না)। আঠারো শতকে তত্বীয় আগ্রগতি থেকে জানা গেল কেবল গাণিতিক গণনা করে পাই এর মান বের করা যাবে না।১৭৬১ সালে জোহান হেনরিক ল্যাম্বার্ট আবিষ্কার করলেন π একটি অমূলদ সংখ্যা। ১৭৯৪ সালে আর্দ্রে-মারি লেজেন্ড্রে আরো একধাপ অগ্রসর হয়ে দেখালেন π2 ও একটি অমূলদ সংখ্যা। ১৭৩৫ সালে বেসেলের সমস্যা সমাধান করে লিওনার্দ অয়েলার[18/01, 12:37 pm] Muntasir Billah: এর প্রকৃত মান বের করেন যা কীনা π2/6। তিনি π ও মৌলিক সংখ্যার মধ্যে ভালো সম্পর্ক খুঁজে পান। অয়েলার ও লিজেঁদর দুইজনই ধারণা করেছিলেন যে π একটি সীমাতিক্রান্ত সংখ্যা হতে পারে। বস্তুত ১৮৮২ সালে ফার্দিনান্দ ভন লিন্ডারম্যান এটি প্রমাণ করেণ। উইলিয়াম জোনস তার এ নিউ ইন্ট্রোডাকশন টু ম্যাথম্যাটিকস (A New Introduction to Mathematics) বইতে প্রথম এই ধ্রুবক প্রকাশে π প্রতীক ব্যবহার করেন। তবে এটি জনপ্রিয় হয় ১৭৩৭ সালে অয়েলার যখন এটি গ্রহণ করেন। [18/01, 12:37 pm] Muntasir Billah: বিশ শতকে কম্পিউটারের উদ্ভাবনের পর π গণনায় নতুন জোয়ার আসে। জন ভন নিউম্যান ১৯৪৯ সালে ২০৩৭ ঘর পর্যন্ত গণনা করেন। এনিয়াক কম্পিউটারে এই গণনার জন্য মাত্র ৭০ ঘণ্টা সময় লেগেছিল। বিশ শতকের শুরুতে ভারতীয় গণিতবিদ শ্রীনিবাস রামানুজন π গণনার বেশ কটি নতুন সূত্র বের করেন।[18/01, 12:38 pm] Muntasir Billah: পাইয়ের মান মুখস্থ করা [18/01, 12:38 pm] Muntasir Billah: কম্পিউটারে পাই গণনার বহু পূর্ব থেকেই পাইয়ের মান মুখস্থ করা কিছু কিছু মানুষের নেশার মতো ছিল। ২০০৬ সালে আকিরা হারাগুচি নামে এক অবসরপ্রাপ্ত জাপানি প্রকৌশলী দাবি করেন তিনি ১,০০,০০০ ঘর পর্যন্ত পাইয়ের মান বলতে পারেন। [18/01, 12:38 pm] Muntasir Billah: অবশ্য এ দাবি এখনো গিনেস ওয়ার্ল্ড রেকর্ডস কর্তৃক পরীক্ষিত হয়নি। গিনেসের স্বীকৃত পাইয়ের মান বলার রেকর্ড হল ৬৭,৮৯০ ঘর, যার অধিকারী চীনের ২৪ বছর বয়স্ক স্নাতক ছাত্র লু চাও।[২৪] তিনি ২৪ ঘণ্টা ৪ মিনিট সময় নিয়ে দশমিকের পর ৬৭,৮৯০ ঘর পর্যন্ত পাইয়ের মান শুদ্ধভাবে বলতে সক্ষম হন।পাইয়ের মান মনে রাখার বেশ কিছু কৌশল আছে, এর মধ্যে সবচেয়ে জনপ্রিয় হল পাই কবিতা (ইংরেজিতে: piem)। এই কবিতাগুলি এমন যে, এর প্রত্যেকটি শব্দের দৈর্ঘ্য (বর্ণে) পাইয়ের একেকটি অঙ্ক প্রকাশ করে।